Supervisory Fuzzy Learning Control for Underwater Target Tracking
نویسندگان
چکیده
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed. Keywords—Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
منابع مشابه
A supervisory fuzzy neural network control system for tracking periodic inputs
A supervisory fuzzy neural network (FNN) control system is designed to track periodic reference inputs in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive with a supervisory FNN position controller. The supervisory FNN controller comprises a supervisory controller, which is designed to stabilize the system states around a defined bound region a...
متن کاملFuzzy Tracking Controller for Underwater Robotic Vehicles
A fuzzy autopilot for track-keeping control of underwater vehicles is considered. Input variables fuzzification, fuzzy rules and output set defuzzification are described. Quality of control of the fuzzy tracking controller under influence of the sea current disturbance was analysed and compared to a traditional PD controller. Some computer simulations are provided to demonstrate the effectivene...
متن کاملSupervisory Recurrent Fuzzy Neural Network Guidance Law Design for Autonomous Underwater Vehicle
A guidance law, based on supervisory recurrent fuzzy neural network control (SRFNNC), is proposed for the autonomous underwater vehicle (AUV) guidance systems. This SRFNNC system is comprised of a recurrent fuzzy neural network (RFNN) controller and a supervisory controller. The RFNN controller is used to mimic an ideal controller and the supervisory controller is designed to compensate for the...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012